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New intermediate models for the rotating shallow water (RSW) equations are derived
by considering the nonlinear interactions between subsets of the eigenmodes for the
linearized equations. It is well-known that the two-dimensional quasi-geostrophic
(QG) equation results when the nonlinear interactions are restricted to include only
the vortical eigenmodes. Continuing past QG in a non-perturbative manner, the new
models result by including subsets of interactions which include inertial-gravity wave
(IG) modes. The such simplest model adds nonlinear interactions between one IG
mode and two vortical modes. In sharp contrast to QG, the latter model behaves
similar to the full RSW equations for decay from balanced initial conditions as well
as unbalanced random initial conditions with divergence-free velocity. Quantitative
agreement is observed for statistics that measure structure size, intermittency and
cyclone/anticyclone asymmetry. In particular, dominance of anticyclones is observed
for Rossby numbers Ro in the range 0.1 <Ro < 1 (away from the QG parameter
regime Ro → 0). A hierarchy of models is explored to determine the effects of wave-
vortical and wave–wave interactions on statistics such as the skewness of vorticity
in decaying turbulence. Possible advantages over previously derived intermediate
models include (i) the non-perturbative nature of the new models (not restricting
them a priori to any particular parameter regime) and (ii) insight into the physical
and mathematical consequences of vortical–wave interactions.

1. Introduction
The equation sets governing geophysical flows involve the complex interaction

of (nonlinear) waves and turbulence over a vast range of space and time scales.
Depending on the atmospheric or oceanic processes of interest, the starting point for
analysis and/or computation of the fluid dynamics may be the rotating shallow water
(RSW) equations (Pedlosky 1986; Salmon 1998), the rotating Boussinesq equations
(RBE) (Salmon 1998; Majda 2003; Kundu & Cohen 2004) or the primitive equations
(PE) (Salmon 1998). Each system of partial differential equations is characterized
by a linear operator giving rise to wave eigenmodes in the linear (inviscid) limit,
and a quadratic nonlinear operator leading to mode coupling in both space and
time. For both practical and theoretical purposes, it is often advantageous to have
simpler models that exclude some physics (usually the fast small-scale motions). For

† Email address for correspondence: lsmith@math.wisc.edu



322 M. Remmel and L. Smith

example, before computers made it feasible to numerically integrate the full equation
sets, it was desirable to have a simpler equation describing the evolution of slow
large-scale motions contributing to weather on relatively short time scales (several
days). Charney’s (1948) quasi-geostrophic (QG) equation fits that role. Charney
derived the QG model using physically relevant and insightful scaling arguments
(Charney 1948; Obukhov 1949), and the QG model may also be obtained from an
asymptotic expansion (Pedlosky 1986). The QG equation is void of gravity waves
and therefore allowed a much larger time step in early computations (Salmon 1998).
In addition, QG requires initial data for only one variable (the pseudo-potential
vorticity). The classical QG equation is perhaps best suited for mid-latitude planetary
scale motion partly because of the ‘thin-layer’ assumption used in its derivation. The
use of this assumption limits the scale of the vertical velocity. Recently, analogous
reduced equations have been derived that pertain to other geophysically relevant
regimes (Julien et al. 2006), for example, those having a vertical scale equal to or
greater than the horizontal scale allowing for increased vertical motion.

However, important features of geophysical flows are missed by QG dynamics.
Several books discuss methods to correct QG used for weather prediction (e.g. Martin
2006). Attempts to include physics beyond QG naturally involved formally extending
the asymptotic analysis to next order. Various ‘intermediate models’ arise from
different assumptions and goals as higher-order corrections to QG are determined.
Intermediate models attempt to improve upon the two-dimensional QG equation
derived from RSW (Allen, Barth & Newberger 1990a; Spall & McWilliams 1992;
Yavneh & McWilliams 1994; Warn et al. 1995; Vallis 1996, and cited literature),
as well as upon the analogous three-dimensional QG equation derived from the
three-dimensional RBE (or equivalently from the three-dimensional PE) (Allen 1991,
1993; Muraki, Snyder & Rotunno 1999; Muraki & Hakim 2001, and cited references).
For example, intermediate models for RSW have been used to numerically study
flows over O(1) topography (Barth, Allen & Newberger 1990) and boundary trapped
waves (Allen, Barth & Newberger 1990b). For these cases QG is not formally valid
(process violates a derivation assumption), filters out the motions of interest and/or
is inaccurate. These studies, applied to oceanographic flow off the west coast of the
United States, found that certain so-called ‘balance equation’ intermediate models
performed the best in the sense of accuracy (Allen et al. 1990b; Barth et al. 1990).

Some intermediate models maintain analogues of conserved volume integrals and
of the Lagrangian invariant potential vorticity (PV) of the original equations, others
maintain one of the two and others lose both (see table 1 of Allen et al. 1990a for
RSW and § 3 of Allen & Newberger 1993 for PE). For RBE and RSW, PV is the
scalar product of the absolute vorticity and the gradient of a conserved quantity. The
conserved quantity generally used for RBE is the density (Majda 2003). For RSW
the conserved quantity is (z − hB)/D, where z is the vertical coordinate, hB is the
height of the bottom topography and D is the total depth of the fluid layer between
the free surface and the bottom topography (Pedlosky 1986). Many studies have
attempted to determine the relative importance of PV conservation and/or global
energy conservation (e.g. McWilliams & Gent 1980). For example, considering RSW,
Allen et al. (1990a) found that particular intermediate models maintaining only PV
conservation performed better than other models with both PV and global energy
conservation. Previously, two similar finite-difference algorithms were tested for the
non-rotating shallow water equations (Sadourny 1975). The algorithms differ only in
the space averaging of the non-gradient part of the nonlinear term of the momentum
equations, leading one numerical model to conserve energy but not potential enstrophy
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and vice-versa for the other numerical model. It was found that the energy-conserving
scheme violated basic flow properties of shallow water in the scale transfer of energy
(non-divergent part) and enstrophy. This perhaps started the evidence that potential
enstrophy conservation is more important to maintain than energy conservation in
shallow water numerical models.

The conserved quantities maintained by an intermediate model are not necessarily
predetermined by the derivation procedure. For instance, the balance equations (BEs)
result from truncation at O(ε) of the equations for the vertical component of vorticity
and the horizontal velocity divergence, where ε is the Rossby number (Ro) measuring
the ratio of rotational and nonlinear time scales. For RSW this procedure leads to
an intermediate model with a Lagrangian invariant analogous to PV, whereas for the
PE, the intermediate model has a volume integral analogous to energy conservation
(Lorenz 1960; Allen 1991). Partly to maintain an analogue to the PV as an invariant,
the balance equations based on momentum (BEM) retain explicit momentum
equations (Allen 1991). The BEM and BE models differ by a few higher-order
terms in their respective balance equations, but the BEM has analogues of both
PV and global energy conservation. Numerical experiments for the time evolution
of an unstable baroclinic jet using BE, BEM and other intermediate models have
shown that neither exact conservation of PV nor volume integrals of an energy density
are crucial for accuracy in the mesoscale parameter range (Allen & Newberger 1993).

In Warn et al. (1995) it is shown that expanding all variables in the relevant small
parameter can and does lead to secularities in higher-order expansions beyond QG.
An iterative approach, free from secular terms, has been developed and the resulting
models asymptotically conserve PV and energy (see Allen 1993; Allen & Newberger
1993). Another technique which avoids secular terms designates a ‘distinguished
evolution variable’, related to the slow modes, and expands the fast modes only
(typically with the Rossby number or Froude number as the small parameter). The
PV has been used as the distinguished variable because of its slow nature (other
variables that project onto the slow modes are also used) for both RSW and PE
(Warn et al. 1995; Vallis 1996). As stated by Vallis (1996), models derived in this way
are not guaranteed to exactly maintain the integral invariants of mass and energy.

The works by Muraki et al. (1999) and McIntyre & Norton (2000) are related
balance models similar to each other in their methodology, and to the papers discussed
in the previous paragraph. In both, the prognostic equation is advection of the
(unexpanded) Lagrangian invariant PV. The work by Muraki et al. (1999) extends
QG for the PE on the f -plane with the region bounded at the bottom and the top
by horizontal surfaces. The formulation is in physical space and employs a change of
variables that exploits the gradient-like structure between the flow variables and the
pressure at first order in Ro. QG is readily obtained by neglecting O(1) contributions
in the expansion. Hence, there is a natural separation between the balanced flow and
gravity waves. Furthermore, extension of the model to next order is straightforward.
The PV is temporarily expanded in Ro according to solvability constraints derived
from its conserved volume integral in order to invert for the corresponding order
gradient scalar potential. While PV conservation holds to all orders, other conserved
relations are only approximate with error determined by the accuracy of the expansion
in powers of Ro. The resulting equations were tested by calculating the next order
corrections to a finite amplitude Eady edge wave. The same intermediate model was
then applied numerically to unstable waves on baroclinic jets (Rotunno, Muraki &
Snyder 2000). A similarly derived model was used to study the asymmetry between
cyclones and anticyclones on the tropopause by extending the surface QG model
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(Hakim, Snyder & Muraki 2002). Repeating the procedure used in Muraki et al.
(1999) for RBE within a periodic setting, it is straightforward to show that the
gradient potential is related to the vortical mode and that the curl potentials are
related to the IG modes. At O(1), the curl potentials are obtained directly from the
leading-order gradient potential alone, and hence the IG modes are determined by
interactions with two vortical modes. In fact, the equations for the curl potentials are
contained within the equations obtained by neglecting the time derivative of the IG
modes and considering only the interactions involving two vortical modes to force
the IG modes. Thus, the Muraki et al. (1999) model has aspects related to the model
denoted by PPG derived herein, which includes all three-mode interactions involving
two or three vortical modes.

In the work by McIntyre & Norton (2000), normal-mode PV inversion balance
models were developed pertaining to RSW on a hemisphere and RSW on the
f -plane. These models are surprisingly accurate as noted by McIntyre and Norton
themselves. For decay from initial conditions containing a small percentage of
gravity waves, the third-order normal-mode inversion model yielded height fields
in remarkable agreement with the corresponding height fields attained by integrating
the full equations for considerable periods of time. The good agreement was robust
even when the flows had regions where the Fr or Ro were far from zero. The normal-
mode inversion models ‘slave’ the IG-mode amplitudes directly to the PV. First,
the vortical-mode amplitudes are calculated in an iteration process via a relation
involving linear PV and the true PV anomaly. Next, the IG mode amplitudes are
updated by either neglecting (first order) or diagnostically estimating (higher order)
the time derivatives of the IG mode amplitudes in the modal equivalent equations
for RSW. This process is iterated (see McIntyre & Norton 2000, for the details). In
contrast to Muraki et al. (1999) and our PPG model, the evolution of the IG modes
results from all types of interactions with vortical modes and other IG modes. In our
model hierarchy, we further dissect the normal-mode approach by isolating classes of
interactions to evolve the IG-mode (and vortical mode) amplitudes. Our derivation
procedure also leads naturally to physical space partial differential equations by
way of inverse transform, or by starting from RSW or RBE rewritten in terms of
appropriate physical variables.

Other than using an asymptotic expansion, the two-dimensional QG and three-
dimensional QG equations can be obtained by considering nonlinear interactions
among only the vortical linear eigenmodes, i.e. the modes corresponding to the
‘slow’ eigenvalue of the linearized RSW or RBE system (Salmon 1998; Smith &
Waleffe 2002; Majda 2003). Our novel approach continues past two-dimensional
QG or three-dimensional QG by also including subsets of inertial-gravity wave
eigenmodes of RSW or RBE, respectively. Different intermediate models are derived
by considering different subsets of the interactions along with the interaction among
the vortical modes, and thus each model includes physics beyond two-dimensional
QG or three-dimensional QG. These new intermediate models have all the wave
frequencies of the full equations, some or all of which are either filtered out or
altered by previous intermediate models. The new three-dimensional intermediate
models for RBE naturally conserve energy by the properties of individual triad
interactions (§ 3 of Kraichnan 1973, see also Appendix B); while energy conservation
is not guaranteed for the new intermediate models beyond two-dimensional QG
because of the cubic nature of the RSW energy. In fact, it is well known that energy
conservation is an issue with any wavenumber truncation of the RSW equations
(Warn 1986; Farge & Sadourny 1989; Yuan & Hamilton 1994). As discussed, lack of
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strict energy conservation does not preclude computational accuracy for time scales of
typical interest (Allen & Newberger 1993). In our numerical computations (with high-
wavenumber dissipation), the energy as a function of time is well behaved, allowing
us to draw conclusions regarding the role of wave–vortical mode interactions.

The focus of the present manuscript is on new intermediate models for RSW, and
models for RBE will be presented elsewhere. Unlike previous intermediate models,
our new models do not depend on a small parameter and hence may be more accurate
in parameter regimes away from the two-dimensional QG regime corresponding to
vanishing Rossby number. Models including vortical–IG wave mode interactions
should be a natural way to study the coupling between the balanced and unbalanced
components of the flow, a topic of much recent interest (Bartello 1995; Embid &
Majda 1996, 1998; Majda & Embid 1998; Salmon 1998; Kuo & Polvani 1999; Ford,
McIntyre & Norton 2000; Reznik, Zeitlin & Ben Jelloul 2001; Majda 2003). Based on
an orthogonal eigenmode decomposition in wave space, the new partial differential
equation models result after an inverse Fourier transform to physical space, and can
be used with any appropriate physical-space boundary conditions. However, they
often contain more nonlinear terms than the full equations, and often these nonlinear
terms involve inverse operators. Hence, despite advantages, their role may be limited
to promoting understanding as a research tool.

A particular shortcoming of QG is its inability to capture the asymmetry between
cyclonic and anticyclonic vortices (Polvani et al. 1994; Kuo & Polvani 2000).
This is to be expected mathematically since the QG equation is parity invariant.
Cyclone/anticyclone asymmetry in geophysical flows and the equations that model
them has received considerable attention (Polvani et al. 1994; Kuo & Polvani 2000;
Rotunno et al. 2000; Muraki & Hakim 2001; Hakim et al. 2002). Observations
show, for example, cyclone dominance in the tropospheric midlatitudes; a prevalence
of anticyclones at oceanic mesoscales; and anticyclone dominance in the Jovian
atmosphere (see, e.g. Kuo & Polvani 2000, and references therein). In two-dimensional,
once the incompressibility constraint is broken (as in RSW) asymmetries develop. In
RSW the asymmetry is in favour of anticyclones for moderately small values of the
Rossby number, i.e. away from the geostrophic parameter regime corresponding to
vanishing Rossby number (Polvani et al. 1994). For β-plane RSW, steady axisymmetric
anticyclonic solutions were sought to equations derived from multiple scale asymptotic
expansions in four regimes based on the ratio of the relevant small parameters. These
steady axisymmetric anticyclonic solutions were found only in the so-called nonlinear
QG regime with characteristic length scale much larger than the Rossby deformation
radius and characteristic velocity scale much larger than the Rossby velocity (see
Stegner & Zeitlin 1995).

Since the (symmetric) two-dimensional QG model involves only nonlinear
interactions among vortical modes, interactions involving IG modes obviously have
a role in the cyclone/anticyclone asymmetry. One aim of this work is to gain insight
into which subset of mode interactions is most important for the generation of
anticyclones in RSW decay from both balanced and unbalanced initial conditions.

The rotating shallow water RSW equations and their properties are given in § 2,
including a discussion of linear eigenmodes and nonlinear invariants. Intermediate
models, including physics beyond QG, are developed in § 3. Section 4 compares
numerical results and statistics for RSW and some of the models. In § 5, numerical
results are presented for the model obtained by including only the nonlinear
interactions among the IG eigenmodes. Conclusions and discussion are given in
§ 6. Interaction coefficients are derived and listed in appendix A. A lemma regarding
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energy conservation is given in appendix B. Fourier space representations for two
of the models are presented in appendix C. Two of the reduced models in partial
differential equation form are found in appendix D.

2. The rotating shallow water equations
The RSW equations can be written as
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∂v
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)
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(2.1)

where u is the velocity in the x̂-direction, v is the velocity in the ŷ-direction, H is the
mean depth, h is the perturbation from the mean H , the rotation axis is ẑ, f is twice
the constant rotation rate and g is the the acceleration due to gravity. Equations (2.1)
have the Lagrangian invariant

q =
∇2Ψ + f

H + h
, (2.2)

called potential vorticity, where ∇2Ψ = vx − uy is the vorticity and Ψ is the
streamfunction. After linearizing q, the non-constant part leaves

Q = ∇2Ψ − f

H
h. (2.3)

Quantity (2.3) will be referred to as linear PV in this paper. Equations (2.1) also have
integral invariants in domains where the fluxes are zero or cancel, e.g. in periodic
domains. One such invariant is the energy

E =
1

2

∫
A

((H + h)(u2 + v2) + gh2) dA. (2.4)

For scalar functions r(q), another class of integral invariants has the form

S(r) =
1

2

∫
A

(H + h)r(q) dA. (2.5)

When r is the square function, this invariant is called potential enstrophy.
Notice that energy and potential enstrophy for RSW are not quadratic, a well-

known difficulty with the shallow water equations. The cubic nature of the RSW
energy and potential enstrophy means that these invariants are not strict under
a truncation in spectral space (Warn 1986; Farge & Sadourny 1989; Yuan &
Hamilton 1994), and their conservation is not guaranteed by our reduced models.
Numerically, however, the energy of the models is well behaved during decay (see
figure 1). For the RBE the appropriately defined energy is quadratic and strictly
conserved by spectral space truncation or restriction of triad (and mode) interactions.
Thus, new intermediate RBE models derived from subsets of triad mode interactions
automatically conserve energy (see appendix B).

It is convenient to rewrite (2.1) so that the Fourier transform of its linear part is
in skew-hermitian form. The first two equations may be multiplied by

√
H , and the
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Figure 1. Representative plots of energy versus time for Ro = .25 and Fr = .2. (a) Balanced
initial conditions. (b) Unbalanced initial conditions (A100).
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(2.6)

where (ψ1, ψ2) =
√

H (u, v) and ψ3 =
√

gh (Salmon 1998). In addition, c =
√

gH , the
non-rotating shallow water wave speed. In terms of the new variables, integral
invariant (2.4) may be written as E = Equad + Ecubic, where

Equad =
1

2

∫
A

(
ψ2

1 + ψ2
2 + ψ2

3

)
dA (2.7)

and

Ecubic =
1

2

∫
A

1
√

gH
ψ3

(
ψ2

1 + ψ2
2

)
dA. (2.8)

For many flows Equad is the dominant contributor to the total energy, in particular
for small amplitude flows. For flows of the latter nature, it is easy to show that the
potential enstrophy also has a dominant quadratic contribution. Hence, for weak
motions these quadratic psuedo-constraints have been used to represent energy and
potential enstrophy (Warn 1986; Farge & Sadourny 1989; Yuan & Hamilton 1994),
allowing space scale separation (by wavenumber). Moreover, even though RSW
allows self-interactions, it still satisfies the Liouville property (Warn 1986, page 4),
and thereby the quadratic invariants allows the use of statistical mechanics to obtain
an equipartition distribution for the vortical and IG mode amplitudes (see Warn 1986,
for the details and references therein). Even though the energy for RBE is quadratic,
the appropriately defined potential enstrophy can only be taken as quadratic for small



328 M. Remmel and L. Smith

amplitude flows as well. In this case, as for RSW, an equipartition distribution has
been derived (Bartello 1995).

For an unbounded or periodic domain, the linear eigenmodes of (2.6) are Fourier
modes

ψ(x, t) = φ(k)ei(k·x−ω(k)t). (2.9)

It can be shown from the linear limit of PV conservation that either ω = 0 or the
mode has no linear PV (see Bartello 1995, for the analogous Boussinesq result). This
fact can also be seen directly from the explicit eigenfunctions.

Substituting (2.9) into the linearized form of (2.6) leads to

ω0 = 0, ω+ = +
√

f 2 + c2k2, ω− = −
√

f 2 + c2k2, (2.10)

where k = |k| =
√

k2
x + k2

y = 0. The corresponding orthonormal eigenfunctions are
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1
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f
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c(k2
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y)

⎞⎠ , (2.11)

where ω =
√

f 2 + c2k2. For the special case k = 0,

ω0 = 0, ω+ = f, ω− = −f, (2.12)

with corresponding eigenfunctions (pure inertial modes φ+ and φ−)
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1

0
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1√
2

⎛⎝−i

1

0

⎞⎠ . (2.13)

These modes (φαeik·x, α =0, +, −, for all k) form a complete set of functions (Salmon
1998). Therefore, in the derivation of the models and parts of the numerical
computations, the nonlinear solution is expanded as

ψ(x, t) =
∑

k

(a0(k, t)φ0 + a+(k, t)φ+ + a−(k, t)φ−)eik·x . (2.14)

The Fourier-transform of (2.6) then becomes

∂a0
k

∂t
φ0

k +
∂a+

k

∂t
φ+

k +
∂a−

k

∂t
φ−

k + iω0
ka

0
kφ

0
k + iω+

k a+
k φ+

k + iω−
k a−

k φ−
k = −N̂Lk (2.15)

where

N̂Lk =
1√
H

̂⎛⎝ ψ1ψ1x + ψ2ψ1y

ψ1ψ2x + ψ2ψ2y

ψ1ψ3x + ψ2ψ3y + ψ3(ψ1x + ψ2y)

⎞⎠
k

(2.16)

and a hat denotes Fourier transform. The time evolution equation for aα
k (α =

0, +, or −) is obtained after scalar product of (2.15) by φα
k , where an overbar

means complex conjugate, and using orthonormality,

∂aα
k

∂t
+ iωα

k aα
k = −N̂Lk · φα

k . (2.17)

Notice that reality implies the following conditions for the amplitudes:

a0(k) = a0(−k), a+(k) = a−(−k), a−(k) = a+(−k) and a−(0) = a+(0), (2.18)

which are useful in deriving the interaction coefficients and hence the models.



New intermediate models for rotating shallow water 329

3. Models
Through quadratic term (2.16), two modes φβ

p and φγ
q can interact to force a third

mode φα
k , where α, β and γ can be 0, + or − for triad interactions with k = p+ q. We

shall represent such an interaction as α|βγ and the interaction coefficient by C
αβγ

k pq .
The right-hand side of (2.17) involves a sum of β and γ over 0, +, −. New models
are obtained by restricting the sum and allowing only certain mode interactions. For
instance, α, β and γ can all be restricted to the 0 (vortical) mode. In this case there
is only one time evolution equation to invert and the two-dimensional QG equation
results. Calculation of an interaction coefficient is demonstrated in appendix A and
the explicit results are listed.

Since the velocity of the RSW equations is not divergence free, a mean flow can be
generated even when not present initially (Warn 1986; Yuan & Hamilton 1994). This
fact manifests itself in Fourier space by non-zero interaction coefficients involving the
mean flows (Warn 1986, see appendix A) of the form C

sβγ

0k−k, where s is + or −. On
the other hand, by (2.13), a0

k = 0 is proportional to hk =0. Hence, its time derivative is
zero. This can be seen by averaging the h equation of (2.1) (conservation of mass).
Moreover, it is easy to check that C

0βγ

0k−k is zero for all combinations of β and γ . It is
natural to take the constant a0

k =0 = 0 (it will remain zero for all models).
The generation of mean flows in RSW can possibly affect the dynamics in a non-

trivial way. For completeness, every model is given with all mean flow contributions.
However, all numerical work done on the models excluded these mean flow additions.
For consistency, the mean flows were set to zero at every time step for the full RSW
equations (2.6) in all the numerical results reported in this paper.

3.1. Quasi-geostrophy

As mentioned, it is well-known that when the vortical modes alone are used to
represent ψ in (2.14), an inverse Fourier-transform of (2.17) gives one derivation
of the two-dimensional QG equation (Salmon 1998). The reader familiar with this
derivation of the two-dimensional QG model may skip § 3.2. In this case (2.14) gives

√
Hk2Ψk =

a0
k

ωk

k2c and
√

gk2hk =
a0

k

ωk

k2f (3.1)

so that after a little algebra

f Ψ = gh and a0
k =

ωkΨ√
g

, (3.2)

where Ψ is the streamfunction and the first relation of (3.2) is called geostrophic
balance. Also, in this case (2.17) has only the equation

∂a0
k

∂t
=

1√
H

∑
k+ p+q=0

a0
pa

0
q

ωpωqωk

c(q × p · ẑ)

(
ω2

p − ω2
q

2

)
. (3.3)

Substituting (3.2) into (3.3) and bringing the result back to physical space obtains

∂Q

∂t
+ J (Ψ, Q) = 0, (3.4)

where Q =(∇2 − f 2/gH )Ψ is the linear PV (2.3) when there is geostrophic balance
and J (f, g) = fxgy − fygx is the Jacobian. There are no mean flow additions to
two-dimensional QG.
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3.2. Models with gravity wave modes

A primary goal of this work is to understand how IG modes interact with vortical
modes and with each other, leading to a departure from QG dynamics. Therefore,
models are developed including interactions involving IG modes. These models have,
in addition to an evolution equation for a0

k , evolution equations for a+
k and a−

k . Further
the geostrophic relation between Ψ and h is broken, and the relationship between a0

k ,
a+

k , a−
k and u, v, h (or Ψ , χ , 〈u〉, 〈v〉, h) must be ascertained, where χ is the potential

function and 〈 · 〉 denotes a domain average (u = χx − Ψy + 〈u〉, v = χy + Ψy + 〈v〉,
∇2χ = ux + vy). For k �= 0, the relation is⎛⎜⎝

√
H (ikxχ − ikyΨ )

√
H (ikyχ + ikxΨ )

√
ghk

⎞⎟⎠ = a0(k, t)φ0
k + a+(k, t)φ+

k + a−(k, t)φ−
k . (3.5)

Using the orthonormality of the eigenmodes and adding and subtracting the result
for a+

k and a−
k yields

a0
k =

−c
√

H

ωk

(
−k2Ψk − f

H
hk

)
=

−c
√

H

ωk

Qk, (3.6)

a+
k + a−

k =

√
2
√

Hk

ωk

(−f Ψk + ghk) = −
√

2
√

Hk

ωk

Vk, (3.7)

a+
k − a−

k = i
√

2
√

Hkχk. (3.8)

Here Q is the linear PV (2.3), and V = f Ψ −gh is a measure of geostrophic imbalance.
The quantity ∇2V has been called by several names in the literature, including:
imbalance (Vallis 1996), geostrophic departure (Warn et al. 1995) and a geostrophic
vorticity (Mohebalhojeh & Dritschel 2001). For k = 0, the relation is⎛⎜⎝

√
Hu0√
Hv0√
gh0

⎞⎟⎠ = a0(0, t)φ0
0 + a+(0, t)φ+

0 + a−(0, t)φ−
0 , (3.9)

from which

a0
0 =

√
gh0, (3.10)

a+
0 + a−

0 =
√

2
√

Hv0, (3.11)

a+
0 − a−

0 = −i
√

2
√

Hu0. (3.12)

It is convenient to present the models by defining

A ≡ (f 2 − c2∇2)−1c2Q and B ≡ (f 2 − c2∇2)−1V, (3.13)

and note by (3.6), A is derived from the vortical modes and by (3.7), B is derived
from the IG modes.

3.2.1. PPG (Vortical–Vortical–IG mode interactions added to QG)

In addition to all the interactions among the vortical modes, the PPG model extends
QG by adding all interactions including exactly one IG mode. Symbolically, the PPG



New intermediate models for rotating shallow water 331

model is written as

∂a0
k

∂t
= 00 ⊕ 0 + ⊕ 0 − (3.14)

∂a+
k

∂t
+ iωka

+
k = 00 (3.15)

∂a−
k

∂t
− iωka

−
k = 00 (3.16)

where the symbol ⊕ is used to mean ‘also including’ in this paper. The physical space
PPG model results from an inverse transform of (3.14)–(3.16). To obtain results in
terms of the variables Q, V and χ , add (3.15) and (3.16), and subtract (3.16) from
(3.15). The results are

∂a0
k

∂t
=
∑

�

a0
p

ωpωqωk

{
a0

q√
H

c( p × q · ẑ)

(
ω2

q − ω2
p

2

)
+

(a+
q + a−

q )
√

2q
√

H
f ( p × q · ẑ)ω2

p

+
(a+

q − a−
q )

√
2q

√
H

iωqω
2
p( p · q + q2)

}
+

a0
k√

2
√

H
(a+

0 (kx − iky) + a−
0 (−kx − iky)), (3.17)

∂(a+
k + a−

k )

∂t
+ iωk(a

+
k − a−

k ) =
1√
H

∑
k+ p+q=0

a0
pa

0
q√

2ωpωqωkk
f ( p × q · ẑ)

(
ω2

p − ω2
q

)
, (3.18)

∂(a+
k − a−

k )

∂t
+ iωk(a

+
k + a−

k ) =
1√
H

∑
k+ p+q=0

−2i
a0

pa
0
q√

2ωpωqωkk
ωkc

2( p × q · ẑ)2, (3.19)

where � represents k + p + q =0 for non-zero k, p and q.
A sum over k of (3.17)–(3.19) and an inverse Fourier transform obtains

∂Q

∂t
+ J (Ψ, Q) + ∇χ · ∇Q + 〈u〉∂Q

∂x
+ 〈v〉∂Q

∂y
+ Q∇2χ = 0, (3.20)

∂∇2V

∂t
− c2∇4χ + f 2∇2χ = f J (A, Q), (3.21)

∂∇2χ

∂t
− ∇2V = 2J

(
∂A

∂x
,
∂A

∂y

)
, (3.22)

where definitions (3.13) have been used.
Some discussion about the right-hand sides of (3.21) and (3.22) is warranted. From

the definitions of Q and V and (3.13) it is found that

Ψ = (f 2 − c2∇2)−1(f V − c2Q) = f B − A,

h = (f 2 − c2∇2)−1(H∇2V − f HQ) = H∇2B − f

g
A. (3.23)

Since PPG includes only interactions that have at least one vortical mode in the
quadratic interaction and the vortical modes contain all the linear PV, some linear
PV present is necessary for nonlinear coupling to occur. However, the nonlinear
terms of (3.21) and (3.22) show how an unbalanced component of the flow can
develop even for initial conditions in geostrophic balance (f Ψ = gh), for which
A= (f 2 − c2∇2)−1c2Q = − Ψ . Then the nonlinear terms of (3.21) and (3.22) reduce
to −f J (Ψ, Q) and 2J (Ψx, Ψy), respectively. In general, by the first relation of (3.23),
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the nonlinear terms can equivalently be written with these terms, −f J (Ψ, Q) and
2J (Ψx, Ψy), and additional terms involving B = (f 2 − c2∇2)−1V .

3.2.2. P2G (Vortical–IG–IG mode interactions added to PPG)

Further vortical–IG mode interactions may be included by adding to PPG all
interactions involving exactly two IG modes. The P2G model results after inverse
Fourier transform of the (symbolic) equations

∂a0
k

∂t
= 00 ⊕ 0 + ⊕ 0 − ⊕ + + ⊕ + − ⊕ − − (3.24)

∂a+
k

∂t
+ iωka

+
k = 00 ⊕ 0 + ⊕ 0 − (3.25)

∂a−
k

∂t
− iωka

−
k = 00 ⊕ 0 + ⊕ 0 − . (3.26)

Notice that the right-hand side of (3.24) includes all interactions that occur for the
time derivative of the amplitude of a vortical mode. Furthermore, since 0| ++, 0| + −
and 0| − − are identically zero (appendix A, see also Warn 1986; Embid & Majda
1996), an inverse transform of (3.24) leads to (3.20), the same as the corresponding
equation for PPG. Another way to see that (3.20) is already complete is to start from
(2.1), take the curl of the momentum equations, subtract f/H times the h equation
and see that (3.20) is obtained.

The Fourier space P2G equations are found in appendix C. In physical space the
P2G model is

∂∇2V

∂t
− c2∇4χ + f 2∇2χ = gJ (∇2Ψ, h) + ∇2J (A, V ) − J (∇2A, V )

−f ∇2(∇ · (A∇χ)) + f ∇ · (∇χ∇2A) (3.27)

∂∇2χ

∂t
− ∇2V = −2(J (Ax, Ψy) + J (Ψx, Ay) + J (Ax, Ay))

−∇2J (χ, A) + J (χ, ∇2A) (3.28)

∂〈u〉
∂t

− f 〈v〉 = 〈Ay∇2χ〉 (3.29)

∂〈v〉
∂t

+ f 〈u〉 = 〈 − Ax∇2χ〉. (3.30)

Recall A ≡ (f 2 − c2∇2)−1c2Q. As for PPG, by (3.23), the nonlinear terms may be
written with terms involving B instead.

3.2.3. GGG (IG–IG–IG interactions)

Here the equations GGG are derived by considering only IG mode interactions.
Hence, GGG is a model to study IG mode interactions in isolation from vortical
mode interactions, but the GGG model is not an intermediate model (which implies
an improvement upon QG). Symbolically, consider

∂a0
k

∂t
= 0 (3.31)

∂a+
k

∂t
+ iωka

+
k = + + ⊕ + − ⊕ − − (3.32)

∂a−
k

∂t
− iωka

−
k = + + ⊕ + − ⊕ − − . (3.33)
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The GGG Fourier space equations are given in appendix C. In physical space they
are

∂Q

∂t
= 0, (3.34)

∂∇2(V )

∂t
− c2∇4χ + f 2∇2χ = −〈u〉∂∇2V

∂x
− 〈v〉∂∇2V

∂y

−f 2∇ · (∇χ∇2B) − f ∇2J (B, V ) + f J (∇2B, V ) + ∇2(∇ · (c2∇2B∇χ)), (3.35)

∂∇2χ

∂t
− f ∇2ψ + g∇2h = −〈u〉∂∇2χ

∂x
− 〈v〉∂∇2χ

∂y

−∇2

(
(∇χ)2

2

)
+ 2f 2J (Bx, By) − f J (χ, ∇2B) + f ∇2J (χ, B), (3.36)

∂〈u〉
∂t

− f 〈v〉 = 〈 − f By∇2χ〉, (3.37)

∂〈v〉
∂t

+ f 〈u〉 = 〈f Bx∇2χ〉. (3.38)

Recall B ≡ (f 2 − c2∇2)−1V .

3.2.4. QVD (all interactions)

Of course, if all interactions are included, an inverse Fourier transform must
recover the equivalent of the full RSW equations. The form attained is denoted as
QVD consisting of evolution equations for the linear PV Q, the imbalance ∇2V and
the horizontal divergence ∇2χ . In addition to (3.20), the QVD equations are

∂∇2(V )

∂t
+ (f 2 − c2∇2)∇2χ = −〈u〉∂∇2V

∂x
− 〈v〉∂∇2V

∂y
− f J (Ψ, ∇2Ψ )

−f ∇ · (∇2Ψ ∇χ) + g∇2(J (Ψ, h)) + g∇2(∇ · (h∇χ)), (3.39)

∂∇2χ

∂t
− ∇2V = −〈u〉∂∇2χ

∂x
− 〈v〉∂∇2χ

∂y

−∇2

(
(∇χ)2

2

)
+ 2J (Ψx, Ψy) − J (χ, ∇2Ψ ) + ∇2J (χ, Ψ ), (3.40)

∂〈u〉
∂t

− f 〈v〉 = −〈Ψy∇2χ〉, (3.41)

∂〈v〉
∂t

+ f 〈u〉 = 〈Ψx∇2χ〉. (3.42)

Equations (3.39) and (3.40) are similar to (8) and (6) of Vallis (1996) minus the beta-
effect. The nonlinear terms of the full QVD form are also obtained if the nonlinear
terms of P2G and GGG are added together.

3.3. Alternate derivation

Starting from the QVD formulation, the models can be derived in physical space
without utilizing Fourier transforms. The key relations are (3.23): Ψ = f B − A and
h = H∇2B − (f/g)A. By (3.13), A is related to the vortical modes while B is related
to the IG modes. Further, by (3.8) and (3.11) and (3.12), χ , 〈u〉 and 〈v〉 are also
related to the IG modes. Therefore, the nonlinear terms of the QVD formulation,
(3.20), (3.39)–(3.42) can be written in terms of Q, V , A, B , χ and the mean flows.
Each nonlinear term in the QVD equations involves products with zero, one or two
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factors corresponding to the IG modes. Then to obtain the PPG model, for example,
keep the products with zero or one factor related to the IG modes in the equation
for Q; keep products with zero factors related to the IG modes in the equations for
the imbalance ∇2V and the horizontal divergence ∇2χ .

4. Numerical results
Although they do not offer a numerical savings to RSW, the PPG and P2G

models can be used to study vortical–IG mode interactions, e.g. which interactions
are primarily responsible for anticyclone dominance observed in RSW decay. For
the numerical calculations, dissipation in the form of hyper-diffusion is added to all
variables for each model. The hyper-diffusion operator has the generic form

(−1)p+1ν∇2p, (4.1)

where ν is the dissipation coefficient and 2p is the order of the hyper-diffusion. The
coefficient ν was adjusted so that the results given by the UVH (2.1) and QVD ((3.20),
(3.39)–(3.42)) forms of RSW agreed within a small error; this corresponded to the
level of dissipation necessary to obtain monotonic decay of energy in all models. All
of the numerics reported herein were done using fourth-order hyper-diffusion.

The models PPG, P2G and GGG share the linear structure of the QVD formulation
of the full equations dictated by the eigenmodes (one equation for the linear vortical
mode in terms of Q and two for the linear gravity wave modes in terms of ∇2V and
∇2χ). In order to numerically integrate the equations with this linear structure, the
equivalent to (2.14) is used. Substituting a Fourier mode⎛⎜⎝ Q

∇2V

∇2χ

⎞⎟⎠ (x, t) =

̂⎛⎜⎝ Q

∇2V

∇2χ

⎞⎟⎠(k, t)ei(k·x−ω(k)t), (4.2)

into the linear part of the models does not give a skew-Hermitian system. However,
by setting ∇2V (k) = ωkZ(k), a factor of ωk can be pulled out of the equation for ∇2V .
With ωk factored out, a skew-Hermitian matrix that multiplies (Q(k), Z(k), ∇2χ(k))T

is obtained. This matrix has the eigenfunctions

ϕ0 =

⎛⎜⎝1

0

0

⎞⎟⎠ , ϕ+ =
1

2

⎛⎜⎝ 0

1 − i

1 + i

⎞⎟⎠ , ϕ− =
1

2

⎛⎜⎝ 0

1 + i

1 − i

⎞⎟⎠ . (4.3)

Hence, ⎛⎜⎝ Q

∇2V

∇2χ

⎞⎟⎠ (x, t) =
∑

k

⎛⎜⎝1 0 0

0 ωk 0

0 0 1

⎞⎟⎠
⎛⎜⎝ Q

Z

∇2χ

⎞⎟⎠ (k, t)eik·x, (4.4)

where ⎛⎜⎝ Q

Z

∇2χ

⎞⎟⎠ (k, t) = (b0(k, t)ϕ0 + b+(k, t)ϕ+ + b−(k, t)ϕ−); (4.5)

see also Mohebalhojeh & Dritschel (2001).
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Thereby, a Fourier transform of any model with the QVD linear form leads to

∂b0
k

∂t
ϕ0

k +
∂b+

k

∂t
ϕ+

k +
∂b−

k

∂t
ϕ−

k + iω0
kb

0
kϕ

0
k + iω+

k b+
k ϕ+

k + iω−
k b−

k ϕ−
k

+νk2pb0
kϕ

0
k + νk2pb+

k ϕ+
k + νk2pb−

k ϕ−
k =

⎛⎜⎝1 0 0

0 1
ωk

0

0 0 1

⎞⎟⎠ N̂Lk, (4.6)

where N̂Lk is the k component of the nonlinear term of the particular model. The
orthonormal property of the eigenfunctions is used to divide (4.6) into three equations,
one for each amplitude b0

k, b
+
k and b−

k . We treat the linear part, dispersive and diffusive
terms, with an integrating factor and advance in time using a standard RK3 scheme.
All equations use a pseudo-spectral scheme for the spatial discretization. All nonlinear
calculations are dealiased by padding via the 3/2 rule and done at 3842 (leaving a
true resolution of 2562). The time step was determined by the minimum of the value
given by the CFL condition times a safety factor, and the value so that there are
10 data points per period of the wave with the largest frequency. The latter was the
more restrictive.

4.1. Initial conditions

We consider numerical decay from two sets of initial conditions for a range of Rossby
Ro and Froude Fr numbers, 0.25 � Ro = U/(f L) � 1 and 0.1 � Fr = U/(gH ) � 0.3.
Here U is the initial root mean square velocity and L is a length scale characterizing
the initial structures (their values and an explanation is forthcoming). We use the
procedure described in Polvani et al. (1994) to initialize the streamfunction Ψ for
both sets of initial conditions. The initial magnitude of Ψk is determined by

| Ψk |2∝ k12.5

(k + 14)25k2
, (4.7)

where k is the magnitude of the non-dimensional wavevector (non-dimensionalized
by 2π/LD where LD is the dimension of the periodic box). Then the phase of each Ψk

is chosen from a uniform (0,2π) distribution. For one set of initial conditions, group
B, we initialize h and χ by inverting the dimensional form of Polvani et al. (1994)
equations (2.5a–c), which are as follows (see Polvani et al. 1994, for more details):

∇2Ψt = −∇ · (∇2Ψ ∇χ) − J (Ψ, ∇2Ψ ) − f ∇2χ, (4.8)

g∇2h = f ∇2Ψ + 2J (Ψx, Ψy), (4.9)(
∇2 − f 2

gH

)
∇2χ =

f

gH
∇ · (∇2Ψ ∇χ) +

f

gH
J (Ψ, ∇2Ψ )

− 2

gH
J (Ψx, Ψy)t − 1

H
∇2(∇ · h∇χ) − 1

H
∇2J (Ψ, h). (4.10)

This set will be referred to as balanced initial conditions.
For the second set of initial conditions, group A and referred to as unbalanced, the

height perturbation h is given the initial value zero. Group A is further categorized
by the percentage, X, of the total initial energy that is divergence free. To achieve
this, the initial magnitudes of Ψk and χk are determined by

| Ψk |2= CX
k12.5

(k + 14)25k2
and | χk |2= C(1 − X)

k12.5

(k + 14)25k2
, (4.11)
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where C is a constant of proportionality. The phase of each Ψk and χk is chosen
from a uniform (0,2π) distribution. To distinguish the runs A, the percentage of initial
energy that is divergence free is part of the label as in AX (e.g. A100).

To set up the numerics, Yuan & Hamilton (1994) was followed and geophysically
relevant parameters were used instead of using a 2π periodic box and dimensionless
numbers. The domain size for all numerics is LD = 4π×106 m. Since (4.7) gives a (non-
dimensional) centroid wavenumber of 18, a consistent length scale is L = 1.4 × 105 m.
For every run the initial root mean square velocity is Urms = 10 m s−1, which is easily
attained by adjusting the proportionality constant in (4.7) or (4.11). Therefore, the
eddy turn over time, L/U =1.4 × 104 s. Note that Ro and Fr can be set to desired
values by appropriately picking f and H, respectively. A range of Ro and Fr were
chosen that cover a subset of that covered by Polvani et al. (1994) (they explored
much larger Ro values).

For all plots spatial dimensions are reported in terms of the length scale L, time and
vorticity dimensions are reported in terms of eddy turn over times L/U and energy
is non-dimensionalized by HU 2

rmsL
2
D/2. Plots pertaining to a specific time correspond

to data obtained at 500 turnover times.

4.2. Results

4.2.1. Energy

As discussed, two difficulties occur with the non-quadratic invariants. The first
difficulty that arises from the necessary truncation in wavenumber is the possibility
of leakage of an invariant into or out of the reduced system (Warn 1986). Second is
(and related to the first), since individual triads cannot be shown to conserve the non-
quadratic invariants, we could not show that the reduced models conserve analogues
of these non-quadratic invariants (other than QG). Therefore, it is important to
monitor the energy in the models and make sure that it behaves reasonably. Figure 1
shows a representative plot of energy versus time for the unbalanced (A100) and
balanced initial conditions. In both cases, the behaviour of the energy in the models
PPG and P2G qualitatively and quantitatively resembles that of the energy in RSW;
furthermore, the energy monotonically decays in time. However, with the A100 initial
conditions distinctions occur among the three models. In particular, the rate of energy
decay is consistent with the number of subsets of interactions involving IG modes
contained by each model. We also refer the reader ahead to figure 18 showing energy
versus time for more unbalanced initial conditions A25, A5 and A0. Notice that the
rate of energy decay in RSW increases with the level of divergence in the initial
conditions. In addition, the difference between the decay rate for RSW and the decay
rates for PPG/P2G increases with larger initial divergence. The latter result is sensible
since RSW contains the most gravity wave activity. The reason that the energy decay
for PPG and P2G is identical for A0 initial conditions will become evident in § 5.

4.2.2. Fields of vorticity

Contour plots of the fields of vorticity for the different models are found in figure 2
for initial conditions A100 and in figure 3 for balanced initial conditions. All plots
correspond to data obtained at 500 turnover times and the same parameters (Ro = .25
and Fr = .2). Notice in figure 2 the difference between the QG model and all other
models. It is apparent that when the interactions involving one IG mode and two
vortical modes are retained along with the interactions among three vortical modes,
anticyclones dominate for these parameters (Ro = .25 and Fr = .2). Also notice the
smaller scales present when there are interactions among IG modes. Moreover, the
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Figure 2. Vorticity: Ro = .25 and Fr = .2. Unbalanced initial conditions.

size of the structures depends on the initial conditions. When the initial conditions
are unbalanced, smaller structures are attained. This is attributed to increased gravity
wave activity due to a larger initial projection onto the IG modes. In figure 3, QVD
and UVH correspond to the full equations integrated in the different forms. The
similarity between these two fields is a visual check on the numerical procedures and
level of diffusivity.

4.2.3. Size of vortices

As a measure of the size of the vortices, the centroid may be defined as

Cent(k) =

(∑
k k(|uk|2 + |vk|2

)∑
k(|uk|2 + |vk|2) . (4.12)

The minimum value of the centroid attained for a run is found in tables 1 and 2 for
balanced and A100 initial conditions, respectively. In addition, representative plots of
the centroid as a function of time are reported in figure 4 for A100 initial conditions
and in figure 5 for balanced initial conditions. The initial value of the centroid is
18. As in Polvani et al. (1994) we find that smaller centroid values (larger coherent
structures) are associated with larger Burger number for RSW. A discussion on this
association is found there including plots and energy considerations as the structures
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Figure 3. Vorticity: Ro = .25 and Fr = .2. Balanced initial conditions.

grow. The Burger number (Bu) is

Bu =

(
Ro

Fr

)2

=

(
LR

L

)2

, (4.13)

where LR =
√

gH/f is the Rossby radius of deformation. Hence, the smaller the initial
vortex size compared to the Rossby radius of deformation, the smaller the centroid
values attained. In fact, for the balanced initial conditions, the initial Bu of a run
consistently predicts where its resulting centroid will fall with respect to the other
runs tested (see table 1). For unbalanced initial conditions, the initial Bu continues to
be an excellent indicator, with only run s out of order (see table 2). In figure 4 we see
that the QG model allows the vortices to grow the largest in size. Both figures 4 and
5 show that the models containing the interactions between two vortical modes and
one IG mode along with the interactions among the vortical modes lead to similar
growth in time of the size of the vortices for balanced and unbalanced divergence
free initial conditions. These results indicate that, whether the inertial-gravity waves
tend to break up coherent structures or, alternatively, that they adversely effect the
merger of like signed vortices, the mode interactions with exactly one IG wave mode
are largely responsible for the inertial-gravity wave activity in RSW for these initial
conditions. Of course, that waves can diminish coherent structures has been noted
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Run Fr Ro Bu Model Min. skewness Max. kurtosis Min. centroid

ne .1 .25 6.25 RSW −2.0869 15.5542 3.8551
n .1 .4 16 RSW −1.9786 18.3945 3.1184

PPG −2.3025 18.2871 3.2190
P2G −2.3122 19.6314 2.9176

ng .1 1 100 RSW −1.6142 30.0610 2.1251
e .2 .25 1.5625 RSW −1.9439 8.1524 5.4406

PPG −1.9754 8.7626 5.4999
P2G −1.9819 8.9138 5.2668

en .2 .4 4 RSW −2.5001 12.2113 4.7425
q .25 .4 2.560 RSW −2.4122 10.6519 5.3361

PPG −2.5367 11.6692 5.4863
P2G −2.2617 10.1176 5.2127

g .3 1 11.1111 RSW −3.6675 21.4015 3.7383
PPG −3.6742 20.0154 4.3410
P2G −3.5242 18.8147 3.9625

Table 1. Balanced initial data (group B).

Run Fr Ro Bu Model Min. skewness Max. kurtosis Min. centroid

n .1 .4 16 RSW −2.3469 17.0606 3.1940
PPG −2.9495 20.2775 3.2863
P2G −2.4513 16.3508 3.2314

e .2 .25 1.5625 RSW −1.2562 5.8498 6.6990
PPG −1.2005 5.5342 7.0476
P2G −1.1664 5.4537 6.9269

q .25 .4 2.560 RSW −2.2339 8.7629 6.5357
PPG −2.0079 8.2410 6.5631
P2G −1.9044 7.5554 6.4945

s .3 .4 1.7778 RSW −1.7473 7.3709 7.0366
PPG −1.5492 6.3412 7.3657
P2G −1.5268 6.3984 7.2340

g .3 1 11.1111 RSW −3.3640 15.6876 4.6613
PPG −3.2899 15.0733 4.8978
P2G −3.2848 14.8449 4.8412

Table 2. Unbalanced 100 % divergence free initial data (group A100).

before, for example, Maltrud & Vallis (1990) found that excitation of Rossby waves
had this effect on coherent structures in the barotropic β-plane model.

The kurtosis of vorticity is positively correlated with the size of the coherent
structures and measures the intermittency of the flow (Mcwilliams 1984, page 25)

Kurt(∇2Ψ ) =

∫
A
(∇2Ψ )4 dA(∫

A
(∇2Ψ )2 dA

)2 . (4.14)

Again, as in Polvani et al. (1994), the Burger number is the non-dimensional number
that predicts where the value of the kurtosis of a run will fall compared to other
runs. The larger the Burger number, the more intermittent (greater kurtosis) the field
is expected to become. For balanced initial conditions only the values of kurtosis for
runs g and n are not in line with their Burger number (table 1). Note that these
two runs have similar Burger numbers, but there is a large difference in their Fr
numbers. The kurtosis for all the runs with A100 initial data are in order with their
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Figure 4. Centroid versus time. Unbalanced initial conditions, A100. (a) Ro = .25 and
Fr = .2. (b) Ro = 1 and Fr = .3.
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Figure 5. Centroid versus time. Balanced initial conditions. (a) Ro = .25 and Fr = .2.
(b) Ro = 1 and Fr = .3.

Burger numbers (table 2). For these two sets of initial data PPG, P2G and RSW have
comparable levels of intermittency in time (for representative plots see figure 6 for
A100 and figure 7 for balanced initial conditions).

4.3. Cyclone anticyclone asymmetry

The skewness of the vorticity

Skew(∇2Ψ ) =

∫
A
(∇2Ψ )3 dA(∫

A

(∇2Ψ )2 dA

)3/2
, (4.15)

as a function of time and the p.d.f. of the vorticity at 500 turnover times may be used
to quantify the asymmetry between cyclones and anticyclones. Plots for two of the
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Figure 6. Kurtosis versus time. Unbalanced initial conditions, A100. (a) Ro = .25 and
Fr = .2. (b) Ro = 1 and Fr = .3.
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Figure 7. Kurtosis versus time. Balanced initial conditions. (a) Ro = .25 and Fr = .2.
(b) Ro = 1 and Fr = .3.

runs with A100 initial conditions are found in figures 8 and 9 and two for those with
balanced initial conditions are in figures 10 and 11. In addition, the largest negative
value of skewness attained is recorded in tables 1 and 2 for runs with balanced and
A100 initial conditions, respectively. For all runs, the value of the skewness given by
the initial conditions is near zero but slightly positive, with a value of 0.0066. When
the linearized equations are integrated, the parity between cyclones and anticyclones is
maintained. Reversing the direction of rotation of the rotating frame (a change in the
sign of f ) in RSW leads to a positive skewness of roughly the same magnitude, also
a preference for anticyclones (both preceding results are excluded from the figures
for clarity). For the parameter regime shown, a preference for anticyclones develops
when the mode interactions involving at least one IG mode are included beyond QG
(PPG, P2G and QVD). As found in Polvani et al. (1994) anticyclone dominance tends
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Figure 8. Ro = .25 and Fr = .2. Unbalanced initial conditions, A100. (a) Skewness versus
time. (b) Asymmetric p.d.f.’s.
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Figure 9. Ro = 1 and Fr = .3. Unbalanced initial conditions, A100. (a) Skewness versus time.
(b) p.d.f. at 7.2 × 106 s about 500 turnover times.

to increase with increasing Fr. Furthermore, PPG, P2G and QVD have roughly the
same behaviour in the skewness versus time and shape for the p.d.f.’s of vorticity for
the balanced and A100 initial conditions at each set of Ro and Fr tested, indicating
a relatively unimportant role of mode interactions containing exactly two IG modes
and those containing three IG modes compared to those containing exactly one IG
mode in the preference for anticyclones in RSW (the interactions among three IG
modes do have a role in the asymmetry for certain initial conditions, see § 5). For
insight into the roles of these classes of interactions in the context of RBE, see
the theoretical work by Babin, Mahalov & Nicolaenko (2002) and the combined
theoretical/numerical discussions in Waite & Bartello (2006) and Sukhatme & Smith
(2008). The exclusion of all interactions involving an IG mode (QG dynamics) results
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Figure 10. Ro = .25 and Fr = .2. Balanced initial conditions. (a) Skewness versus time.
(b) p.d.f. at 7.2 × 106 s about 500 turnover times.
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Figure 11. Ro = 1 and Fr = .3. Balanced initial conditions. (a) Skewness versus time.
(b) p.d.f. at 7.2 × 106 s about 500 turnover times.

in p.d.f.’s that are symmetric and skewness values that hover around zero as expected
(see also Polvani et al. 1994; Kuo & Polvani 2000).

Considering the balanced initial conditions, one can see that there is more
influencing the final level of skewness than just the initial Fr. The initial size of the
structures, and therefore the initial Bu, also plays a role in predicting the resulting level
of skewness. For instance, runs n and e attain comparable values of the skewness. In
fact, run e with twice the initial Fr attains a less negative minimum value of skewness
than run n. However, run n has a larger initial Bu, larger structures and a more
intermittent field (see table 1).
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Figure 12. (a) Skewness versus time for A100 initial conditions at Fr = .2. The more skewed
plot has a larger Burger number. (b and c) Relationship between intermittency and skewness,
run g. (d and e) Relationship between intermittency and skewness at low Fr, run n. In
general, an increase (decrease) in the intermittency corresponds to an increase (decrease) in
the magnitude of skewness.

At larger initial Fr � .2, in general the skewness in the vorticity field increases with
the initial Bu. For example, one may compare run en with run e. Both runs have
the same initial Fr, but run en has a larger initial Bu. The skewness value for run
en is always below the skewness value of run e, and the difference is severe (left plot
figure 12). A large initial Fr along with a large initial Bu leads to a very skewed field
(run g, table 1). Interestingly, the opposite trend is observed at low Fr = .1: a smaller
initial Bu leads to a more skewed vorticity field among the three runs tested at this
Fr (table 1).

For a particular run, regardless of initial Fr, an increase in intermittency as measured
by the kurtosis generally corresponds to an increase in anticyclone dominance as
measured by the skewness. Figure 12(b–e) shows this mirror relationship between the
kurtosis and skewness for a run with a high and a low Fr, respectively. This indicates
that the negative values of vorticity dominate as more weight is placed on extreme
values of vorticity.

For A100 initial conditions, it is also found that the Fr is an incomplete predictor
of the resulting asymmetry in the vorticity field and that the Bu again plays a role.
In fact, for Fr � .2 the Bu predicts the resulting level of asymmetry for a run, with
the level of dominance of the anticyclones increasing with initial Bu (table 2).

4.4. Discussion

It is apparent that, besides limiting the growth of coherent structures, interactions
involving IG modes play an important role in the dominance of anticyclones. When
the QG equation is integrated, the p.d.f. of vorticity is quite symmetric and the
skewness remains close to zero as expected (Polvani et al. 1994; Kuo & Polvani 2000).
The addition of interactions involving exactly one IG mode leads to a drastic change.
The p.d.f. is far from symmetric and the skewness attains negative values for the
parameter range reported. These effects are amplified, in general, with increasing Fr
number as in Polvani et al. (1994).

Since A100 initial conditions project stronger onto the IG modes than balanced
initial conditions, the results obtained from the two sets can provide more insight
into the role of interactions. For example, starting from A100 initial conditions, RSW
in general yields the most negative values of skewness, followed by PPG, then P2G
(table 2). On the other hand, starting from balanced initial conditions, in general PPG
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yields the largest negative values (table 1). Note an exception is for the low Fr run,
run n, for this run the skewness of PPG is the most negative for virtually the entire
duration of the run for both initial conditions (plots excluded). These observations
suggest that with even more imbalance in the initial conditions, RSW will show
greater negative values of the skewness than PPG and P2G, at least for runs with
larger Fr. This will be confirmed when divergence is added to the initial conditions,
shedding light on the role of the GGG interactions (see § 5).

Differences observed between PPG and P2G would help determine the role of the
interactions ±|0±, all of which are catalytic (Warn 1986) in the sense that the slow
mode is not changed in the interaction and there is transfer between the fast modes.
Further, the interactions +|0− and −|0+ are resonant catalytic if both wavenumber
magnitudes of the fast modes belong to the same shell (i.e. have the same magnitude,
Embid & Majda 1996). However, the role of these interactions is not elucidated
by the statistics measured here; PPG captures the behaviour of RSW for the initial
conditions considered, and there is little difference between PPG and P2G in the values
of the measured statistics. It should be noted that RBE resonant catalytic interactions
are likely to be more important than RSW resonant catalytic interactions, since RBE
resonant catalytic interactions involve fast wavevectors on the same cone, thereby
allowing transfer between scales. For RBE the resonant catalytic interactions have
been shown to play a role in the transfer of energy towards smaller scales (Bartello
1995).

It is emphasized that there were no major differences between PPG and P2G for
the statistics measured here. This does not mean that there are no differences in the
evolution of a flow between PPG and P2G. For example, the detailed space–time
evolution of the vortices may be influenced by the catalytic resonant interactions
of RSW (absent in PPG but contained in P2G) which transfer energy between
wavevectors of different orientation but not of different magnitude.

Further reduced models can be developed and tested. Two of these models are
explicitly written in appendix D. One of these models, labelled P2SG, includes all
the interactions of P2G less the interactions involving exactly one IG mode. The
P2SG model displays no preference for anticyclones for A100 conditions. This result
further shows the importance of the interactions involving one IG mode and two
vortical modes in the preference for anticyclones in RSW, and is not surprising
based on the similar results obtained for PPG and P2G. The P2SG model actually
displays a slight bias for cyclones starting from balanced initial conditions, perhaps
reflecting the slightly more skewed results of PPG than P2G for the same initial
conditions (figures 10 and 11). The other of these models, labelled PPSG, excludes
the interactions among the vortical modes from the PPG model and hence includes
only the interactions with exactly one IG mode. The mimicking of the anticyclonic
dominance of RSW found in PPG is absent from the PPSG model, showing that the
presence of the interactions among the vortical modes plays a role in the asymmetry.
However, energy considerations and structure size are factors when the interactions
among the vortical modes are absent since, not surprisingly, energy dissipates faster
and larger structures are inhibited (figures 13 and 14).

5. GGG numerical results
5.1. Balanced and unbalanced initial data

Here the interactions among only the IG modes (less the pure inertial modes) are
considered via the GGG model. Before presenting numerical results, it may be of
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Figure 13. Ro = .4 and Fr = .25. Representative behaviour of the energy for the different
models. (a) A100 initial conditions. (b) Balanced initial conditions.
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Figure 14. Ro = .4 and Fr = .25. Representative behaviour of the centroid for the different
models. (a) A100 initial conditions. (b) Balanced initial conditions.

interest to note that the GGG model can be integrated with fewer Fourier transforms
than RSW per time step. For A100 initial conditions, the skewness (figure 15) falls
slightly negative before moving back towards zero. For balanced initial data, the
skewness (figure 16) jumps to positive values before falling slightly and levelling off.
The interactions among the IG modes do not replicate the general cyclone/anticyclone
asymmetry of RSW. In addition, for both initial conditions, the interactions among
the IG modes dissipate energy at a faster rate (figure 13) and do not lead to the
growth in structures (figure 14) as for the models with the interactions among the
vortical modes present. Based on the results of QG and GGG, we expect that a model
that includes the interactions among the vortical modes along with the interactions
among the IG modes would not give the asymmetry found in RSW or PPG, in part
because there is no exchange between vortical and IG modes.
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Figure 15. Unbalanced initial conditions. (a) Skewness versus time for GGG. (b) p.d.f. at
about 500 turnover times comparison between QVD and GGG for Ro = .4 and Fr = .25.
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Figure 16. Balanced initial conditions. (a) Skewness versus time for GGG. (b) p.d.f. at about
500 turnover times comparison between QVD and GGG for Ro = .4 and Fr = .25.

5.2. No initial linear PV data

In Mohebalhojeh & Dritschel (2001) it is shown that the linear subspace of IG
modes is an invariant manifold (this fact is also contained in Warn 1986). This is
done using the Lagrangian invariant q and the fact that the linear IG modes contain
none of the quantity q − f/H . The result can also be seen immediately by Fourier
mode interactions. The interaction coefficients C0+−

k pq , C0++
k pq and C0−−

k pq (k, p and q all
non-zero here) are all zero (appendix A, see also, Warn 1986). The linear subspace of
IG modes not including the pure inertial modes is not an invariant manifold because
a pure inertial mode can be generated by this subspace since C++−

0k−k �= 0 and C−−+
0k−k �= 0

(see appendix A). However, the additional fact that C0++
k0k , C0+−

k0k and C0−−
k0k are also all

zero shows that the linear subspace of IG modes is an invariant manifold. Therefore,
by relation (3.6), if we start with no linear PV, then none can be generated. Hence,
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Run Fr Ro B Model Min. skewness Max. kurtosis Min. centroid

n .1 .4 16 RSW −1.6122 16.0612 3.2264
PPG −1.5797 12.4914 3.5612
P2G −1.2275 13.5751 3.7106

e .2 .25 1.5625 RSW −0.5560 4.2548 7.3701
PPG −0.3886 3.8522 7.8341
P2G −0.3170 3.6695 7.7687

q .25 .4 2.560 RSW −1.3550 6.2448 6.1077
PPG −0.8149 4.8067 6.9869
P2G −0.8613 4.8372 6.8285

s .3 .4 1.7778 RSW −0.9253 4.9214 6.8070
PPG −0.5546 3.8504 8.0028
P2G −0.4606 3.9074 7.6998

g .3 1 11.1111 RSW −2.9768 15.1632 4.3398
PPG −2.4794 11.8409 4.7660
P2G −2.4018 12.0015 4.4778

Table 3. Unbalanced 50 % divergence-free initial data.
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Figure 17. Ro = .13 and Fr = .3. No PV initial conditions. (a) Skewness versus time.
(b) Energy versus time. (c) Centroid versus time.

with initial data void of linear PV, GGG should give the same results as RSW. To
obtain initial data with no linear PV, a random Ψ was generated as done for the
balanced initial conditions, but then Q =0 was inverted to obtain h. In order to
satisfy the limit set on h by H (the perturbation depth cannot be below the mean
depth) a large enough f is needed so that Ro is limited in magnitude. The numerical
data show that the results obtained for GGG and RSW are indeed the same for this
initial data (figure 17). Note with this initial data that the skewness becomes positive
then fades back to zero with time.

5.3. Further role of GGG interactions

With the balanced and A100 initial conditions there are relatively minor differences
in the qualitative behaviour between PPG, P2G and RSW. In order to learn about
the role of the interactions between one vortical mode and two IG modes and among
three IG modes, initial conditions that project stronger onto the gravity wave modes
are used. This is done by decreasing the amount of energy that is initially divergence
free from 100 % to 50 %, initial conditions A50. Results for initial conditions A50
are recorded in table 3. All runs are less skewed with initial conditions A50 than
the corresponding runs for A100. In addition, the change in skewness between the
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Figure 18. Ro =1 and Fr = .3. Energy versus time. (a) A25. (b) A5. (c) A0.
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Figure 19. Ro = 1 and Fr = .3. Centroid versus time. (a) A25. (b) A5. (c) A0.

two initial conditions varies with the parameters of the flow and it appears that the
change is greater for runs with a smaller Burger number. For example, looking at
RSW, for run e the new minimum value of skewness is 44 % of the old, whereas
for run g it is 89 %. Furthermore, the difference between the statistics of RSW and
the other two models is now distinct with the A50 initial conditions, thereby singling
out the additional role of the interactions among three IG modes. Observe that with
initial conditions A50, RSW is the most skewed model for every run, including for
run n; for balanced and A100 initial conditions, RSW was the least skewed for the
parameter values of run n. In addition, RSW attains the greatest kurtosis and least
centroid for each run compared to PPG and P2G. The differences between PPG and
P2G as with the previous initial conditions are not very distinct. However, for all
runs except run q, PPG attains a greater negative value of the skewness than P2G.

The results for initial conditions A25, A5 and A0 are found in figures 18–21. The
results for A25 initial data accentuate those discussed for A50. Again RSW easily
attains the most negative skewness, the largest kurtosis and the smallest centroid. The
differences between PPG and P2G are even less distinct. Note that initial conditions
A0 have zero projection onto the vortical modes; therefore, they are on the invariant
manifold spanned by the linear subspace of IG modes. Hence, it is interesting to note
the changes between initial conditions A5 and A0, in particular in the plots of the
skewness (figure 21) and the kurtosis (figure 20). The resulting kurtosis of RSW for A5
initial conditions tends to increase throughout the run; for A0 initial conditions the
kurtosis jumps above the value for a Gaussian before moving closer to this value with
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Figure 20. Ro = 1 and Fr = .3. Kurtosis versus time. (a) A25. (b) A5. (c) A0.
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Figure 21. Ro = 1 and Fr = .3. Skewness versus time. (a) A25. (b) A5. (c) A0.

time. For the A5 initial conditions, the resulting skewness of RSW is always below
that of the other models and attains negative values; whereas for A0 initial conditions
the resulting skewness of RSW is positive and always above that of the other models.
For A0 initial conditions PPG and P2G give the same result, one of pure decay
without nonlinear interactions, a consequence of starting on the invariant manifold.

6. Conclusion and discussion
New intermediate models were developed for RSW by considering subsets of the

interactions among the linear eigenmodes. These models are useful to determine
the dynamical effects of certain mode interactions in various parameter regimes. In
particular, several models were used here to explore cyclone/anticyclone asymmetry
in RSW decay, including QG (vortical mode interactions only), PPG (vortical mode
interactions and interactions among two vortical modes and one IG mode) and P2G
(vortical mode interactions and interactions of vortical modes with one or two IG
modes). Through the use of numerical experiments, it was found that PPG interactions
are grossly responsible for the development of anticyclone dominance starting from
unbiased balanced or unbiased unbalanced divergence-free initial conditions in a
parameter range away from Ro → 0. As divergence was added to the unbalanced
initial conditions, the interactions among three IG modes played a larger role and
separated the results for RSW from the models PPG and P2G. When the initial
conditions contained significant divergence, the RSW had a greater dominance of
anticyclones than PPG or P2G. No major differences were found between the PPG
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and P2G models. Since the quadratic interaction of two IG modes to force a vortical
mode is always zero, P2G adds to PPG only the interactions which change the
amplitude of an IG mode by the interaction of an IG mode and a vortical mode. By
definition these interactions are catalytic and include resonant catalytic interactions
(opposite signed IG modes of the same wave shell).

The centroid and kurtosis were reported as a measure of the size and intermittency
of the structures, respectively. For RSW, the smaller the size of the initial structures
relative to the Rossby radius of deformation, the more the structures were found
to grow as reported in Polvani et al. (1994) (i.e. a larger initial Bu is associated
with more of an increase in structure size). This was also the general trend for the
models PPG and P2G. For PPG, P2G and RSW, the initial conditions influenced
the growth of structures, with the larger structures developing from balanced initial
conditions. In the models that do not include the QG interactions among three
vortical modes, not surprisingly, the growth of larger structures was restricted. The
QG model, also not surprisingly, had the largest growth in the structures. For all
initial conditions considered herein, as for the skewness, PPG and P2G exhibited
relatively little difference for the size and intermittency of the structures. We expect
differences for the corresponding RBE models with regard to structure size since the
interactions are less restricted (see below).

We have also performed forced experiments starting from rest to compare the
QG, PPG, P2G model dynamics to the full RSW forced dynamics. We used a
random white-in-time force with Gaussian spatial correlation localized about a given
wavenumber, and explored various scenarios: forcing of only the vortical modes, only
the IG modes, all modes and only a divergence-free velocity field. Interesting results
were obtained for the QG, PPG, P2G and RSW models when only the vortical modes
were forced at small scales, but relatively far from the dissipation range. First, all four
models had approximately a linear increase of energy with time, with total energy
approximately equal to the product of the energy input rate multiplied by the elapsed
time. Second, all models showed virtually the same growth of the structures with
time. However, the skewness of the QG model remained roughly zero. In contrast,
the skewness of the PPG, P2G and RSW became negative, again indicating a bias
for anticyclones. All three systems PPG, P2G and RSW exhibited approximately the
same quantitative development of the negative skewness. Differences arise between
RSW and the PPG and P2G models when all modes are forced and when only the
IG modes are forced. These results will be presented in detail elsewhere.

In addition, this type of work is applicable to other systems. For example, the
authors have derived the analogous models for RBE as presented here for RSW. These
RBE models could be even more illuminating for several reasons. The hydrostatic
and ‘thin layer’ assumptions in RSW have the effect of limiting resonant and/or
near resonant interactions. In particular, RSW is known to lack resonant interactions
among three IG modes (Warn 1986; Embid & Majda 1996). Since the thin layer
and hydrostatic assumptions are absent from RBE, our intermediate models could
potentially help to distinguish between different classes of exact and near resonant
interactions. For example, it is known that the vortical mode interactions dominate
the dynamics for strong rotation and stratification in the range 1/2 � N/f � 2 (also
the range for which resonant interactions among IG modes do not exist in RBE
Bartello 1995; Embid & Majda 1998; Babin, Mahalov & Nicolaenko 2000; Smith &
Waleffe 2002; Sukhatme & Smith 2008). For N/f > 2, Ro = O(1) and forcing at small
scales, previous numerical work indicated the important role of the IG modes in the
formation of Vertically Sheared Horizontal Flows (VSHF), but did not distinguish
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between the role of three IG wave interactions and interactions involving two IG
modes and one vortical mode (Smith & Waleffe 2002). Analytical and numerical
calculations have suggested that the catalytic near resonances play a key role in
establishing qualitatively different dynamics for N/f > 2 and N/f < 1/2 (Bartello
1995; Babin et al. 2000; Smith & Waleffe 2002; Sukhatme & Smith 2008). With our
hierarchy of models, we have the ability to explore the origin of such differences
through study of mode coupling, for all possible classes of mode interactions, in
isolation and in concert. Analysis of the model coupling coefficients and numerical
calculations should significantly increase our understanding of important phenomena
such as asymmetry and loss of balance.

Dr Jai Sukhatme contributed numerous helpful discussions on all aspects of this
work. We also thank Professor Waleffe for the idea of the proof for the Lemma in
appendix B. Author M.R. is thankful to Dr Chris Snyder for hosting him at NCAR
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during that visit. We gratefully acknowledge funding from NSF CMG (0529596)
and the DOE Multi-Scale Mathematics program (DE-F602-05ER25703). We also
appreciate helpful comments by the reviewers.

Appendix A. Interaction coefficients
The interaction coefficients are determined in the calculation of the right-hand side

of (2.17) restricted to the interaction of the certain modes of the coefficient. The
interaction coefficient depends on the way in which it is defined. In this paper the
interaction coefficient C

αβγ

k pq is defined by

∂aα
k

∂t
+ iωα

ka
α
k =

1√
H

∑
β,γ

∑
k= p+q

aβ
pa

γ
q C

αβγ

k pq . (A 1)

Another possible definition analogous to that used by Warn (1986) is

∂aα
k

∂t
+ iωα

k aα
k =

i√
H

∑
β,γ

∑
k+ p+q=0

a
β
pa

γ
q μ

αβγ

k pq . (A 2)

The coefficients are related by

μ
αβγ

k pq = −iCα−β−γ

k− p−q . (A 3)

Using the reality conditions, the radial property of the dispersion relation and that
ω−α

k = − ωα
k , it is easy to show that

C
−α−β−γ

k pq = C
αβγ

−k− p−q . (A 4)

A formula for the explicit calculation of the interaction coefficients is useful. Here we
borrow some notation ideas from Warn (1986) and elect a symmetric definition. The
notation (u, v) is used to represent

∑
uivi . Then, with the understanding that when a

two-dimensional wavevector is used in a three-dimensional operation it is appended
with a zero for its third component, define

I
αβγ

k pq ≡ −
(
i p, φγ

q

)(
φβ

p, φ
α
k

)
−
(
i p, φβ

p

)(
ẑ, φγ

q

)(
ẑ, φα

k

)
, (A 5)

so that

C
αβγ

k pq =
I

αβγ

k pq + I
αγβ

kq p

2
. (A 6)
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Next the interaction coefficient corresponding to 0|0+ is calculated directly as an
illustration. Consider one triad k = p + q, which does not contain the zero vector. Let

k and p be vortical modes and q be an IG mode. We calculate −(N̂Lk · φ0
k)

√
H for

this triad,

−
[
(i p · (ψ1(q)), ψ2(q))φ0( p) + (iq) · (ψ1( p), ψ2( p))φ+(q)

+

⎛⎜⎝ 0

0

ψ3( p)(iq · (ψ1(q), ψ2(q)))

⎞⎟⎠+

⎛⎜⎝ 0

0

ψ3(q)(i p · (ψ1( p), ψ2( p)))

⎞⎟⎠
⎤⎥⎦ · φ0

k (A 7)

= − a0( p)a+(q)√
2ωpωqqωk

⎧⎪⎨⎪⎩(iωq p · q + f (q × p · ẑ))

⎛⎜⎝−ipyc

ipxc

f

⎞⎟⎠+ c(q × p · ẑ)

⎛⎜⎝ωqqx + if qy

ωqqy − if qx

cq2

⎞⎟⎠+

⎛⎜⎝ 0

0

if ωqq
2

⎞⎟⎠
⎫⎪⎬⎪⎭ ·

⎛⎝ ikyc

−ikxc

f

⎞⎠ . (A 8)

Simplifying, one obtains

a0
pa

+
q√

2ωpωqqωk

(
f ( p × q · ẑ)ω2

p − iωqω
2
p( p · q + q2)

)
for k = p + q. (A 9)

Including all triads results in

∂a0
k

∂t
=

1√
H

∑
�

a0
pa−

q√
2ωpωqqωk

(
f ( p × q · ẑ)ω2

p − iωqω
2
p( p · q + q2)

)
. (A 10)

Therefore

C00+
k pq =

1

2
√

2ωpωqqωk

(
f ( p × q · ẑ)ω2

p − iωqω
2
p( p · q + q2)

)
; (A 11)

the factor of 1/2 appears due to the sum over β and γ in A 1 and there is an equal
contribution from C0+0

k pq , however, (A 10) as written does take care of the contributions

from C00+
k pq and C0+0

k pq .
Now let k → −k, p → − p, q → −q and use reality to obtain

∂a0
k

∂t
=

1√
H

∑
�

a0
pa

+
q√

2ωpωqqωk

(
f ( p × q · ẑ)ω2

p − iωqω
2
p( p · q + q2)

)
. (A 12)

Taking the complex conjugate obtains

∂a0
k

∂t
=

1√
H

∑
�

a0
pa

+
q√

2ωpωqqωk

(
f ( p × q · ẑ)ω2

p + iωqω
2
p( p · q + q2)

)
. (A 13)

Therefore

C00−
k pq =

1

2
√

2ωpωqqωk

(
f ( p × q · ẑ)ω2

p + iωqω
2
p( p · q + q2)

)
, (A 14)



354 M. Remmel and L. Smith

which agrees with the result obtained from (A 4) applied to (A 11). Now we complete
the list

C000
k pq =

1

ωpωqωk

c( p × q · ẑ)

(
ω2

q − ω2
p

2

)
, (A 15)

C0++
k pq = 0, (A 16)

C0+−
k pq = 0, (A 17)

C+00
k pq =

1

2
√

2ωpωqωkk

(
f ( p × q · ẑ)

(
ω2

p − ω2
q

)
− 2iωkc

2( p × q · ẑ)2
)
, (A 18)

C+0+
k pq =

1

2ωpωqqωkk

1

2

{
1

c
( p × q · ẑ)ω2

qω
2
k +

f 2

c
(q × p · ẑ)ω2

p − if cωq(q
4 + 3( p · q)q2

+2( p · q)2) + 2if cωk( p × q · ẑ)2 − ωqωkc(q × p · ẑ)(q2 + 2( p · q))

}
, (A 19)
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2ωpωqqωkk
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, (A 20)
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−iω2
kωqp
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2ωppωqqωkk
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− f ωkωq( p × q · ẑ)(q2 + 2( p · q)) − f ωkωp( p × q · ẑ)
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k pq =

1

2
√

2ωppωqqωkk

1
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{
f ωkωq( p × q · ẑ)(q2 + 2( p · q)) − f ωkωp( p × q · ẑ)
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k( p × q · ẑ)(q2 − p2) + iω2

kωpq2( p · q + p2)

+iω2
kωqp

2( p · q + q2) − iωpωqωkk
2( p · q) − 2if 2ωk( p × q · ẑ)2
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. (A 23)

The non-zero mean flow interactions are

C00+
kk0 =

1√
2
(kx − iky), (A 24)

C+0+
0−kk =

1

2ωk

kc(kx + iky), (A 25)

C+0−
0−kk =

1

2ωk

kc(−kx − iky), (A 26)



New intermediate models for rotating shallow water 355

C+++
kk0 =

1√
2
(kx − iky), (A 27)

C++−
kk0 =

1√
2
(−kx − iky), (A 28)

C++−
0k−k =

1√
2ωk

f (−kx − iky). (A 29)

Here reality, a+(0) = a−(0), can be used as well to complete the list. Many interactions
including mean flows are zero: C0++

k0k , C0+−
k0k , C++0

k0k , C+−0
k0k , C+00

0k−k, C+++
0k−k , C+−−

0k−k , C+−+
kk0 ,

and C+−−
kk0 .

Appendix B. Detailed balance

Lemma 1. Consider the system ∂u/∂t + L(u) + B(u, u) = 0, which has
∫

u · udx as a
quadratic invariant and the linear operator, L, has orthogonal eigenvectors with purely
imaginary eigenvalues corresponding to modes α, β and γ . Then, for a triad k+ p+q = 0,
the interaction coefficients sum to zero.

C
αβγ

kpq + C
βγα

pqk + C
γαβ

qkp = 0

Proof. This is a generalization of the idea found in Kraichnan (1973, § 3)
Make the eigenfunctions orthonormal and write

u =
∑

k

{aα
k φα

k + a
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k φ
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k φ
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k }eik·x .

Therefore,∫
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∫ (∑
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k φα
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l φ
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l φ
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l }eil·x

)
dx.

Using the invariance of this quantity leads to the result

d

dt

(∑
k

|aα
k |2 + |aβ

k |2 + |aγ

k |2
)

= 0. (B 1)

Initially let only the amplitude of exactly one mode for each leg of a single triad,
k + p + q = 0, be non-zero. For the k leg the δ mode and the ε mode and ζ mode
for the p and q legs, respectively, where δ, ε and ζ are one of α, β or γ . Therefore,
at time zero (B 1) yields(

∂aδ
k

∂t
aδ
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∂aε

p

∂t
aε
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∂aζ

q
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ζ
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ζ
q
{
C

δεζ
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εζδ
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ζδε

qkp

})
+ C.C. = 0,

where C.C. is short for complex conjugate.
Hence,
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ka

ε
pa

ζ
q
{
C

δεζ

kpq + C
εζδ

pqk + C
ζδε

qkp

}
+ C.C. = 0.



356 M. Remmel and L. Smith

Appendix C. Fourier space representation of P2G and GGG
C.1. P2G

As similarly done for PPG, add and subtract (3.25) and (3.26)
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(a+
q − a−

q )

q
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Note that the generation of mean flows separates into their own equations (C 3) and
(C 4), where the sum on the right-hand side over the dummy variable k represents a
domain average.

C.2. GGG

Add and subtract (3.32) and (3.33) to obtain
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Appendix D. Other reduced models
No mean flow interactions are considered here.

D.1. P2SG (P2G less interactions with exactly one IG mode)

Symbolically,

∂a0
k

∂t
= 00 ⊕ + + ⊕ + − ⊕ − − (D 1)

∂a+
k

∂t
+ iωka

+
k = 0 + ⊕ 0 − (D 2)

∂a−
k

∂t
− iωka

−
k = 0 + ⊕ 0 − . (D 3)

The resulting equations are

∂Q

∂t
= J (A, Q), (D 4)

∂∇2(f Ψ − gh)

∂t
− c2∇4χ + f 2∇2χ = ∇2(J (A, V ) − f (A∇2χ + ∇A · ∇χ))

+J (Q, c2∇2B) + f (∇2χ∇2A + ∇χ · ∇∇2A) − J (∇2A, V ), (D 5)

∂∇2χ

∂t
−f ∇2ψ + g∇2h = ∇2J (A, χ) − J (∇2A, χ) + 2f (J (Ay, Bx) + J (By, Ax)). (D 6)

D.2. PPSG (PPG less the interactions among the vortical modes)

Symbolically,

∂a0
k

∂t
= 0 + ⊕ 0 − (D 7)

∂a+
k

∂t
+ iωka

+
k = 00 (D 8)

∂a−
k

∂t
− iωka

−
k = 00. (D 9)

Leading to

∂Q

∂t
= f J (Q, B) − ∇Q · ∇χ − Q∇2χ (D 10)

∂∇2(f Ψ − gh)

∂t
− c2∇4χ + f 2∇2χ = f J (A, Q) (D 11)

∂∇2χ

∂t
− f ∇2ψ + g∇2h = 2J (Ax, Ay). (D 12)
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